Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Industrial activities have increased the supply of iron to the ocean, but the magnitude of anthropogenic input and its ecological consequences are not well-constrained by observations. Across four expeditions to the North Pacific transition zone, we document a repeated supply of isotopically light iron from an atmospheric source in spring, reflecting an estimated 39 ± 9 % anthropogenic contribution to the surface ocean iron budget. Expression of iron-stress genes in metatranscriptomes, and evidence for colimitation of ecosystem productivity by iron and nitrogen, indicates that enhanced iron supply should spur spring phytoplankton blooms, accelerating the seasonal drawdown of nitrate delivered by winter mixing. This effect is consistent with regional trends in satellite ocean color, which show a shorter, more intense spring bloom period, followed by an earlier arrival of oligotrophic conditions in summer. Continued iron emissions may contribute to poleward shifts in transitional marine ecosystems, compounding the anticipated impacts from ocean warming and stratification.more » « lessFree, publicly-accessible full text available June 10, 2026
-
NA (Ed.)Abstract In vitro incubations using natural marine communities can provide insight into community structure and function in ways that are challenging through field observations alone. We have designed a minimal metal incubation system for controlled and repeatable experimentation of microbial communities. The systems, dubbed Pelagic Ecosystem Research Incubators (PERIcosms), are 115 L, conical tanks designed to sample suspended, settled, and wall associated material for month long periods. PERIcosms combine some of the ecological advantages of large volume mesocosm incubations with the experimental ease and replication of bottle incubations, and their design is accessible for use by researchers without specialized training or travel to a designated incubation facility. Here, we provide a detailed description for the construction and implementation of PERIcosms and demonstrate their potential to promote replicable, diverse communities for several weeks under clean conditions using time‐series results from two field experiments. One field experiment utilized coastal waters collected from Santa Catalina Island, CA and the other oligotrophic waters collected offshore of Honolulu, HI. Biomass metrics (chlorophyll a and particulate carbon) along with 16S/18S DNA based community composition assessments were conducted to show that communities contained within PERIcosms remained alive and diverse for several weeks using a semi‐continuous culturing approach. We detail trace metal clean techniques that can be used to minimize external contamination, particularly for low dissolved iron environments. PERIcosms have the potential to facilitate natural community incubations which are needed to continue advancing our understanding of microbial ecology and geochemistry.more » « less
-
This dataset describes measurements of river migration rates (averaged over the period 2016-2022) in three locations within the Yukon River Watershed: Huslia, Alaska (AK) (65.700 N, 156.387 W), Beaver, AK (66.362 N, 147.398 W), and Alakanuk, AK (62.685 N, 164.644 W). Huslia is located on the Koyukuk River and Beaver and Alakanuk are located on the Yukon River. The river migration rates are quantified from sub-pixel correlation of optical satellite imagery (Sentinel-2 imagery, 10 meter (m) spatial resolution), following the methodology of Geyman et al. (2024). The methodology allows for the detection of riverbank erosion at scales approximately 5-10 times smaller than the pixel size, so the detection threshold is 1-2 m over the approximately 7-year interval, corresponding to a migration rate of 0.1 to 0.3 m/year. The motion of the eroding and accreting sides of the river are quantified separately. The river migration rate datasets are made available as georeferenced shapefiles.more » « less
-
This document describes geomorphic relative age mapping and radiocarbon (14C) measurements used to construct floodplain age models for three locations within the Yukon River Watershed: Huslia, Alaska (65.700 N, 156.387 W), Alakanuk, Alaska (62.685 N, 164.644 W), and Beaver, Alaska (66.362 N, 147.398 W). We describe the field sampling protocols, geomorphic mapping of cross-cutting relationships (aided by digital elevation models (DEMs) and high-resolution satellite imagery), 14C and optically stimulated luminescence (OSL) lab analyses, Markov Chain Monte Carlo (MCMC) interpolation through the geomorphic–radiogenic age constraints, and the resulting floodplain terrain age models.more » « less
-
The carbon stored in permafrost deposits represents the single largest soil carbon reservoir on Earth. Concerns about the instability and dynamics of this carbon reservoir during permafrost thaw associated with polar amplification of climate warming contribute a large part of the uncertainty in forecasting future climate. We have been studying the carbon dynamics of permafrost deposits contained in the floodplains of large Arctic rivers. Across Arctic floodplains, accelerating bank erosion can liberate permafrost organic carbon (OC) as carbon dioxide (CO2) or methane (CH4), and/or redeposit it in fluvial units. These different fates have very different implications for climate feedback. Determining OC stocks and their dynamics in Arctic floodplain cutbanks and point bars, as well as the OC load in fluvial transport, is essential to better understand the recycling and export of permafrost carbon. As part of a National Science Foundation (NSF) funded project to better understand the effects of erosion in the Yukon River Basin, floodplain sediments were collected between June and September 2022 at two locations underlain by discontinuous permafrost within the Yukon River Basin in Alaska: Beaver (65.700° North (N), 156.387° West (W)) and Huslia (66.362° N, 147.398° W). This dataset mainly reports OC contents for collected subsurface sediments in floodplains measured by elemental analyzer. The coupled mercury content can be found in Isabel et al., 2024 (https://doi.org/10.18739/A2RF5KH5J).more » « less
-
Due to atmospheric circulation and preservation of organic matter, large amounts of mercury (Hg) are stored in permafrost regions. Due to rapid warming and thawing permafrost in the Arctic, this Hg may be released, potentially degrading water quality and impacting human health. River bank erosion in particular has the ability to quickly mobilize large amounts of Hg-rich floodplain sediments. As part of a National Science Foundation (NSF) funded project to better understand the effects of erosion in the Yukon River Basin, floodplain sediments were collected between June and September 2022 at two locations underlain by discontinuous permafrost within the Yukon River Basin: Beaver, Alaska (AK) (65.700 N, 156.387 W) and Huslia, AK (66.362N, 147.398 W). This dataset contains mercury contents for collected floodplain sediments measured by direct thermal decomposition. Sample metadata also includes information recorded in the field (location, visual grain size description, and sample collection depth) and collected post sample processing (water content and dry density).more » « less
-
This dataset includes field measurements of above-ground biomass made between May and October, 2023 in three locations within the Yukon River Watershed: Huslia, Alaska(AK) (65.700 N, 156.387W), Beaver, AK (66.362 N, 147.398W), and Alakanuk, AK (62.685N, 164.644W). We measured a total of 11,335 trees, distributed in 190 field plots (approximately 10 meter (m) x 10 m). We apply allometric scaling relations to convert measurements of tree diameter to kilograms of dry biomass. We then link these filed measurements of above-ground biomass density to the mean forest canopy height (MCH), derived from airborne Light Detection and Ranging (LiDAR) data. We derive empirical regressions linking MCH to above-ground biomass in each of the field sites, and then apply these empirical relationships to the LiDAR datasets to obtain maps of above-ground biomass density. This dataset includes both the field observations (coordinates, tree type, and tree diameter of the 11,335 inventoried trees) and the processed above-ground biomass maps (georeferenced TIFF files, with a spatial resolution of 10 m).more » « less
An official website of the United States government
